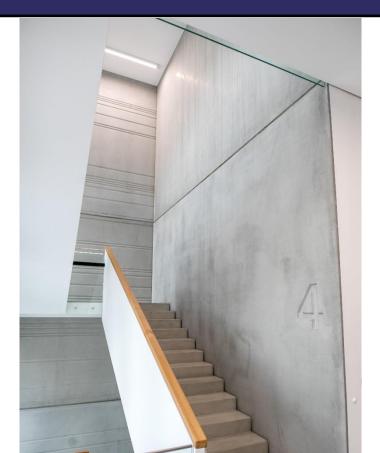
Environmental Product Declaration

In accordance with ISO 14025 and EN 15804:2012+A2:2019 for:

Precast concrete stairs


from

INHUS Prefab, UAB

Programme:	The International EPD [®] System, <u>www.environdec.com</u>
Programme operator:	EPD International AB
EPD registration number:	S-P-03855
Publication date:	2021-05-26
Revision date:	2022-01-03
Valid until:	2026-12-10

An EPD should provide current information and may be updated if conditions change. The stated validity is therefore subject to the continued registration and publication at www.environdec.com

Company information

Owner of the EPD: INHUS Prefab, UAB E-mail: prefab@inhus.eu Tel. +370 5 2600120 https://www.inhusprefab.eu/en

<u>Description of the organisation</u>: INHUS Prefab is a manufacturing company implementing various architectural ideas of buildings, producing brick, coloured, matrix and graphic concrete facade elements, which make every building unique. The company has extensive experience in developing a variety of concrete structures and elements, including prefabricated wall elements, hollow core and balcony slabs, stair and linear structural elements.

Key facts about INHUS Prefab:

- 2 factories in Vilnius and Kaunas (Žarijų str. 6, 02300 Vilnius and Bituko str. 5, 52366 Kaunas)
- 200 000 m² of wall panel produced annually
- 200 000 m² of hollow core slabs produced annually
- 6 500 m³ of frame constructions produced annually

INHUS Prefab is a part of INHUS - one of the leading "design-build" project developers in the Nordic region with sales of 60 million Euro and approximately 550 employees in 2021. INHUS cooperates with the largest Lithuanian and Scandinavian building enterprises and real estate developers to bring simplicity to "design-build" delivery.

INHUS vision is to build buildings without using construction sites - a world where clients only have to worry about their ideas and not the technical execution. Sustainability is at the core of this vision, because it requires to rethink the construction process, materials and the role of their employees. The company currently makes progress with a holistic approach, making net-positive investments into all three dimensions of sustainability - social, environmental and economical.

To create maximum value to their customers and to the environment, INHUS takes full responsibility for the entire production process; from the design and manufacturing of building components, to the development of logistic solutions and finally the construction itself. The company innovates in production methods, implements modern technologies, ensures efficient use of resources and invests in its employee's development. INHUS has also developed a carbon reduction strategy, outlining its planned steps and obligations up to 2030.

Finally, the company is a member of Lithuanian Builders Association, Lithuanian Construction Industry Association, Lithuanian Construction Product Testing Laboratory and is recognized for meeting the management system standards - ISO 9001: 2015 (quality standard) and ISO 14001: 2015 (environmental protection standard).

Visit <u>https://www.inhusprefab.eu/en</u> to learn more.

<u>Name and location of production site(s):</u> INHUS Prefab, UAB, Žarijų str. 6, 02300 Vilnius, Lithuania.

Product information

Product name: Precast concrete stairs

<u>Product identification:</u> Stair elements are certified and manufactured in accordance with the harmonized European standard EN 14843 Precast concrete products - Stairs. It holds the CE mark and the declaration of performance issued by the manufacturer in accordance with requirements of Regulation (EU) No. 305.2011 of the European Parliament and of the Council issued on 2011 March 9th.

<u>Product description</u>: Stair elements are intended for the transport of people between floors. They are produced in various configurations: straight, Z-type, twisted, together with landing or without. Stairs can be used indoors and outdoors. Steps can be smooth or rough - using matrices in production. Stairs that are operated inside buildings can be with terrazzo steps. The ceiling surface is rolled. According to the project, the details are concreted for handrail connection.

The products are manufactured in the following dimensions and technical features:

- Height: 150 300 mm,
- Width: 900 3000 mm,
- Length: 1000 3000 mm,
- Concrete: C 30/37 C 60/75.

Stairs are used in residential buildings, schools, hospitals, supermarkets, parking lots.

UN CPC code: 375

<u>Geographical scope:</u> Lithuania, Sweden, Denmark, Poland, United Kingdom

LCA information

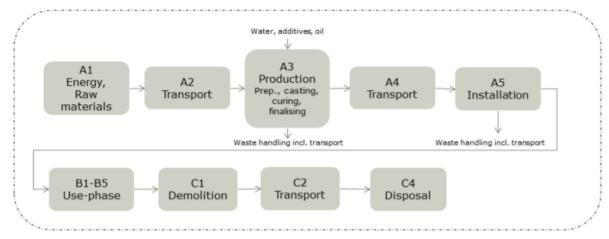
<u>Functional unit / declared unit:</u> In accordance with the PCR the declared unit is 1 metric tonne of the product.

<u>Reference service life</u>: The reference service life for the precast concrete stairs is set at 50 years.

<u>Time representativeness</u>: Primary data was collected internally. The production data refers to the average of the year 2020.

<u>Database(s) and LCA software used:</u> The Ecoinvent database provides the life cycle inventory data for the raw and process materials obtained from the background system. The used database is Ecoinvent 3.6. The LCA software used is One Click LCA.

<u>Description of system boundaries</u>: Cradle to gate with options, modules C1-C4 and module D. The LCA was carried out considering the Product stage phases (A1, A2, A3), Distribution (A4), Installation (A5), End of life (C1, C2, C3, C4), Potential environmental benefits (D) in accordance with EN 15804.


<u>Data quality:</u> The foreground data collected internally is based on yearly production amounts and extrapolations of measurements on specific machines and plants. Overall, the data quality can be described as good. The primary data collection has been done thoroughly.

<u>Cut-off criteria</u>: Life cycle inventory data for a minimum of 99% of total material and energy input flows have been included in the life cycle analysis. Although, only materials having in summa less than 1% of weight of product were not used in calculations.

System diagram:

System boundary:

	Modules declared	Module	
Raw material supply	х	A1	Prc
Transport	x	A2	oduct sta
Manufacturing	х	A3	age
Transport	х	A4	proc
Construction installation	х	A5	ruction cess age
Use	MND	B1	
Maintenance	MND	B2	
Repair	MND	В3	U
Replacement	MND	B4	se sta
Refurbishment	MND	B5	ge
Operational energy use	MND	B6	
Operational water use	MND	B7	
De-construction demolition	x	C1	Er
Transport	х	C2	nd of l
Waste processing	х	C3	ife sta
Disposal	x	C4	ge
Reuse-Recovery-Recycling-potential	x	D	Resource recovery stage

Description of the system boundary (X = Included in LCA; MND = Module Not declared; MNR = Module Not relevant)

Product stage:

A1: This stage considers the extraction and processing of raw materials.

A2: The raw materials are transported to the manufacturing plant. In this case, the model includes road transportation of each raw material.

A3: This stage includes the manufacture of products and packaging. It has considered all the energy consumption and waste generated in the production plant.

Production process description

Stair elements are produced in moulds made from plywood or on special metal forms with plywood broadsides. Reinforcement framework is produced in reinforcement production bar and transported to the production bar by trolley. Framework is put in the mould by crane. Inserts, loops, etc. are placed (if needed). Concrete produced in concrete batching plant is transported to the production bar by dolly for moulding. After moulding concrete surface is smoothened or roughened and protected from drying. After the concrete has reached the strength of not less than 70%, stair elements are demoulded, inspected and transported to the warehouse by trolly.

Construction process stage:

A4: This stage includes transport from the production gate to the construction site where the product shall be installed. Transportation distances has been calculated using a most likely scenarios, an export to Lithuania, Sweden, Denmark, Poland, United Kingdom with the parameters described in the following table. The transportation doesn't cause losses as products are packaged properly.

Scenario parameter	Distance, km	Value kgCO2e/tonkm
1) Lithuania		
Truck, Euro 5	30	0.0909
Ferry	-	-
2) Lithuania		
Truck, Euro 5	100	0.0909
Ferry	-	-
3) Sweden		
Truck, Euro 6	200	0.0863
Ferry	413	0.0094
4) Sweden		
Truck, Euro 6	300	0.0863
Ferry	413	0.0094
5) Denmark		
Truck, Euro 6	400	0.0863
Ferry	862	0.0094
6) Denmark		
Truck, Euro 6	500	0.0863
Ferry	862	0.0094
7) United Kingdom		
Truck, Euro 6	400	0.0863
Ferry	2070	0.0094
8) United Kingdom		
Truck, Euro 6	500	0.0863
Ferry	2070	0.0094
9) Poland		
Truck, Euro 5	500	0.0909
Ferry		-
10) Poland		
Truck, Euro 5	800	0.0909
Ferry	-	-

Capacity of utilization for truck is 56% of the capacity in volume. Capacity of utilization for ferry is 50% of the capacity in volume.

A5: This stage considers the installation of the product into the building.

Tower cranes powered by electricity are used for the installation work. Staircase elements, such as flights and landings, are delivered by trucks and erected directly from the truck platform and placed according to the design in the areas allocated for these structures. As stair elements are straight, curved

or Z-type, the installation technology differs slightly. However, all staircase elements are installed after the walls and slabs have been erected and anchored in accordance with the design. Stair landings are installed first, followed by the stair flights. Sound attenuating gaskets are used to connect the stair flights to the landings. Sound attenuating gaskets are also used in the wall sockets of the stairway landing. This ensures sound propagation into the rooms. Once the staircase elements have been installed, safe handrails are provided to last for the duration of the construction. In the last phase of construction, the said handrails are dismantled and the handrails are installed in accordance with the design.

Use stage:

In normal use scenario, it is assumed that no maintenance (B2), repair (B3), replacement (B4) and refurbishment (B5) is needed.

End of Life stage:

This stage includes the following modules:

C1, Deconstruction, dismantling, demolition

Consumption of fuel in demolition process is calculated according to transported mass. Energy consumption for demolition is 10 kWh/1000 kg = 0,01 kWh/kg. The source of energy is diesel fuel used by work machines.

C2, Transport of the discarded product to the processing site

It is estimated that there is no mass loss during the use of the product, therefore the end-of-life product is assumed to have the same weight with the declared product. Whole end-of-life product is assumed to be sent to the closest facilities such as recycling and landfill. Transportation distance to the closest disposal area is estimated as 50 km and the transportation method is lorry which is the most common.

C3, Waste processing for reuse, recovery and/or recycling

Based on European average 90% of steel are transformed into secondary material at a recycling plant. According to European Commission Waste Framework Directive, the preparing for re-use, recycling and other material recovery of non-hazardous construction and demolition waste shall be increased to a minimum of 70 % by weight by 2020. It is assumed that 70% of the concrete waste is recycled.

C4, Discharge (disposal)

The remaining 30 % of concrete and 10 % of steel are assumed to be sent to the landfill.

Benefits and loads beyond the system boundary (D):

Benefits of recyclable waste generated in the phase C3 are taken into account in the phase D. The recycled steel has been modelled to avoid use of primary materials. The scrap content in the studied product has been acknowledged and only the mass of primary steel in the product provides the benefit in order to avoid double counting. Crushed concrete is made into rubble that can be used as a raw material in concrete production for road gravel.

Content information

Product components	Weight, kg	Weight, %
Sand	383.3	38.3
Stone	399.8	40.0
Cement	130.1	13.0
Water	44.2	4.4
Reinforcement	37.6	3.8
Embedded details	4.1	0.4
Additives	0.9	0.1
TOTAL	1000.0	100.0

No dangerous substances from the candidate list of SVHC for Authorisation are used in the product.

Packaging

Distribution packaging: wooden gaskets.

After use, packaging materials can be re-used or recycled.

Environmental Information

Note: Environmental impacts according to EN 15804+A1, CML/ISO 21930 are presented below

Potential environmental impact – mandatory indicators according to 15804:2012+A2:2019

					Results p	er functio	onal or dec	lared unit				
Indicator	Unit	A1	A2	A3	Tot.A1- A3	A4	A5	C1	C2	СЗ	C4	D
GWP-total	kg CO₂ eq.	1,64E+02	8,782E-1	1,26E+01	1,77E+02	See below	3,66E+01	3,30E+00	4,55E+00	3,58E+00	1,54E+00	-5,565E0
GWP- fossil	kg CO ₂ eq.	1,63E+02	8,779E-1	1,24E+01	1,76E+02	See below	3,64E+01	3,30E+00	4,54E+00	3,63E+00	1,54E+00	-5,536E0
GWP- biogenic	kg CO2 eq.	9,56E-1	2,475E-5	1,161E-1	1,07E+00	See below	1,383E-1	2,419E-4	1,287E-4	-5,349E- 2	2,106E-3	-2,218E- 2
GWP- luluc	kg CO2 eq.	8,566E-2	2,643E-4	6,457E-2	1,505E-1	See below	3,458E-2	2,785E-4	1,368E-3	1,301E-3	4,558E-4	-7,187E- 3
ODP	kg CFC 11 eq.	9,307E-6	2,064E-7	1,71E-6	1,122E-5	See below	2,626E-6	7,117E-7	1,068E-6	7,151E-7	6,32E-7	-5,031E- 7
AP	mol H+ eq.	5,171E-1	2,063E-3	7,23E-2	5,914E-1	See below	1,594E-1	5,636E-3	1,068E-2	3,952E-2	7,238E-3	-2,546E- 2
EP- freshwater	kg P eq.	3,822E-2	6,26E-5	4,71E-3	4,3E-2	See below	1,177E-3	1,197E-4	3,24E-4	7,611E-5	1,589E-4	-3,321E- 3
EP- marine	kg N eq.	1,316E-1	2,951E-4	1,74E-2	1,493E-1	See below	4,337E-2	7,58E-4	1,527E-3	1,492E-2	1,419E-3	-3,779E- 3
EP- terrestrial	mol N eq.	1,45E+00	3,152E-3	2,017E-1	1,65E+00	See below	4,848E-1	8,11E-3	1,631E-2	1,652E-1	1,54E-2	-4,578E- 2
POCP	kg NMVOC eq.	4,117E-1	1,739E-3	6,395E-2	4,774E-1	See below	1,513E-1	8,069E-3	9,003E-3	4,538E-2	6,314E-3	-1,226E- 2
ADP- minerals & metals*	kg Sb eq.	1,25E-2	1,499E-5	1,987E-4	1,271E-2	See below	1,869E-3	5,034E-6	7,754E-5	5,65E-5	1,403E-5	-6,113E- 4
ADP- fossil*	MJ	1,31E+03	1,35E+01	1,99E+02	1,52E+03	See below	3,24E+02	4,48E+01	6,99E+01	5,00E+01	4,27E+01	-7,818E1
WDP	m³	3,58E+03	1,05E+01	2,01E+04	2,37E+04	See below	1,37E+01	9,62E+00	5,42E+01	2,549E-1	1,32E+01	-3,371E2
Acronyms		use and la freshwater	and use chang = Eutrophica	e; ODP = De tion potential,	pletion potentia fraction of nut	al of the strat rients reaching	c = Global War tospheric ozon ng freshwater trophication po	e layer; AP = end compartm	Acidification p nent; EP-marin	ootential, Accu ne = Eutrophic	mulated Exce	edance; EP- al, fraction of

freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment; EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption

* Disclaimer: The results of this environmental impact indicator shall be used with care as the uncertainties of these results are high or as there is limited experience with the indicator.

Potential environmental impact – mandatory indicators according to 15804:2012+A2:2019

			ults per fu	Swe		· · ·	mark		<u>~9-)</u> К	Bal	and
Indicator	Unit	30 km A4 LT (1)	100 km A4 LT (2)	613 km A4 SWE (3)	713 km A4 SWE (4)	1262 km A4 DK (5)	1362 km A4 DK (6)	2470 km A4 UK (7)	2570 km A4 UK (8)	500 km A4 PL (9)	800 km A4 PL (10)
GWP-total	kg CO ₂ eq.	2,73E+00	9,11E+00	2,14E+01	3,01E+01	4,31E+01	5,18E+01	5,45E+01	6,32E+01	4,55E+01	7,29E+0 ⁻
GWP- fossil	kg CO ₂ eq.	2,73E+00	9,11E+00	2,14E+01	3,01E+01	4,30E+01	5,18E+01	5,44E+01	6,32E+01	4,55E+01	7,28E+0
GWP- biogenic	kg CO ₂ eq.	7,739E-5	2,58E-4	-1,58E-3	-1,32E-3	-3,35E-3	-3,00E-3	-9,5E-3	-9,24E-3	1,29E-3	2,064E-3
GWP- luluc	kg CO ₂ eq.	8,221E-4	2,74E-3	8,145E-3	1,089E-2	1,652E-2	1,926E-2	2,431E-2	2,705E-2	1,37E-2	2,192E-2
ODP	kg CFC 11 eq.	6,421E-7	2,14E-6	5,066E-6	7,208E-6	1,02E-5	1,234E-5	1,249E-5	1,463E-5	1,07E-5	1,712E-
AP	mol H ⁺ eq.	6,418E-3	2,139E-2	1,694E-1	1,908E-1	3,497E-1	3,712E-1	7,199E-1	7,413E-1	1,07E-1	1,711E-
EP- freshwater	kg P eq.	1,948E-4	6,492E-4	1,453E-3	2,102E-3	2,919E-3	3,569E-3	3,371E-3	4,02E-3	3,246E-3	5,194E-3
EP- marine	kg N eq.	9,182E-4	3,061E-3	3,722E-2	4,029E-2	7,716E-2	8,022E-2	1,681E-1	1,712E-1	1,53E-2	2,449E-2
EP- terrestrial	mol N eq.	9,806E-3	3,269E-2	4,109E-1	4,436E-1	8,519E-1	8,846E-1	1,86E+00	1,90E+00	1,634E-1	2,615E-
POCP	kg NMVOC eq.	5,412E-3	1,804E-2	1,252E-1	1,432E-1	2,583E-1	2,763E-1	5,192E-1	5,372E-1	9,02E-2	1,443E-
ADP- minerals & metals*	kg Sb eq.	4,661E-5	1,554E-4	3,397E-4	4,951E-4	6,819E-4	8,373E-4	7,665E-4	9,218E-4	7,769E-4	1,243E-3
ADP- fossil*	MJ	4,20E+01	1,40E+02	3,30E+02	4,70E+02	6,635E	8,04E+02	8,08E+02	9,48E+02	7,00E+02	1,12E+0
WDP	m ³	3,26E+01	1,09E+02	2,271E	3,36E+02	4,55E+02	5,64E+02	4,84E+02	5,93E+02	5,43E+02	8,69E+0

ropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion potential, deprivation-weighted water consumption

* Disclaimer: The results of this environmental impact indicator shall be used with care as the uncertainties of these results are high or as there is limited experience with the indicator.

Use of resources

					Results p	er functio	onal or dec	lared unit				
Indicator	Unit	A1	A2	A3	Tot.A1- A3	A4	A5	C1	C2	C3	C4	D
PERE	MJ	9,05E+01	1,719E-1	3,82E+02	4,73E+02	See below	5,48E+01	2,454E-1	8,897E-1	2,26E+00	3,47E-1	-6,776E0
PERM	MJ	0,00E+00	0,00E+00	1,79E+02	1,79E+02	See below	1,81E+01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
PERT	MJ	9,05E+01	1,719E-1	5,61E+02	6,52E+02	See below	7,28E+01	2,454E-1	8,897E-1	2,26E+00	3,47E-1	-6,776E0
PENRE	MJ	1,44E+03	1,38E+01	2,17E+02	1,67E+03	See below	3,24E+02	4,51E+01	7,12E+01	5,00E+01	4,32E+01	-9,55E1
PENRM	MJ.	0,00E+00	0,00E+00	0,00E+00	0,00E+00	See below	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
PENRT	MJ	1,44E+03	1,38E+01	2,17E+02	1,67E+03	See below	3,24E+02	4,51E+01	7,12E+01	5,00E+01	4,32E+01	-9,55E1
SM	kg	4,35E+01	0,00E+00	4,85E+01	9,20E+01	See below	3,43E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
RSF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	See below	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
NRSF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	See below	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
FW	m³	2,27E+00	2,843E-3	5,539E-2	2,32E+00	See below	6,908E-1	4,007E-3	1,472E-2	8,611E-3	4,694E-2	-7,908E- 1
Acronyms		energy res excluding materials;	ources used a non-renewable PENRT = Tota	is raw materia primary ener al use of non-	ergy excluding Is; PERT = Tot gy resources u renewable prir secondary fuels	al use of ren used as raw r nary energy	ewable primar materials; PEN re-sources; SN	y energy resou IRM = Use of I A = Use of sec	urces; PENRE	= Use of non e primary ene	-renewable pri rgy resources	mary energy used as raw

Use of resources

		Lithu	lania	Swe	eden	Den	mark	U	к	Pol	and
		30 km	100 km	613 km	713 km	1262 km	30 km	100 km	613 km	713 km	1262 kn
Indicator	Unit	A4 LT (1)	A4 LT (2)	A4 SWE (3)	A4 SWE (4)	A4 DK (5)	DK (6)	A4 UK (7)	A4 UK (8)	A4 PL (9)	A4 PL (10)
PERE	MJ	5,348E-1	1,78E+00	3,90E+00	5,69E+00	7,83E+00	9,62E+00	8,81E+00	1,06E+01	8,91E+00	1,43E+0
PERM	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+0
PERT	MJ	5,348E-1	1,78E+00	3,90E+00	5,69E+00	7,83E+00	9,62E+00	8,81E+00	1,06E+01	8,91E+00	1,43E+0
PENRE	MJ	4,28E+01	1,43E+02	3,35E+02	4,78E+02	6,75E+02	8,18E+02	8,20E+02	9,63E+02	7,13E+02	1,14E+0
PENRM	MJ.	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+0
PENRT	MJ	4,28E+01	1,43E+02	3,35E+02	4,78E+02	6,75E+02	8,18E+02	8,20E+02	9,63E+02	7,13E+02	1,14E+(
SM	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+
RSF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+
NRSF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+
FW	m ³	8,846E-3	2,949E-2	6,367E-2	9,317E-2	1,278E-1	1,573E-1	1,415E-1	1,709E-1	1,474E-1	2,359E

Acronyms

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non-renewable primary energy resources used as raw materials; PENRT = Total use of non-renewable primary energy resources; SM = Use of non-renewable primary energy resources used as raw materials; PENRT = Total use of non-renewable primary energy resources; SM = Use of non-renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; SM = Use of non-renewable secondary fuels; SM = Use of non-renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; SM = Use of non-renewable secondar

Waste production and output flows

Waste production

					Results p	er functic	onal or dec	lared unit	:			
Indicator	Unit	A1	A2	A3	Tot.A1- A3	A4	A5	C1	C2	C3	C4	D
Hazardous waste disposed	kg	1,28E+01	1,327E-2	5,637E-1	1,34E+01	See below	4,47E+00	4,882E-2	6,869E-2	0,00E+00	4,016E-2	-4,14E-1
Non- hazardous waste disposed	kg	1,83E+02	1,47E+00	2,66E+01	2,12E+02	See below	5,85E+01	5,218E-1	7,60E+00	0,00E+00	2,92E+02	-1,694E1
Radioactiv e waste disposed	kg	4,992E-3	9,375E-5	6,938E-4	5,78E-3	See below	1,235E-3	3,177E-4	4,852E-4	0,00E+00	2,839E-4	-3,66E-4

Waste production

		R	esults per	functional	or declare	d unit (only	scenarios	of A4 stag	ge)		
		Lithu	iania	Swe	eden	Denr	nark	U	к	Poland	
		30 km	100 km	613 km	713 km	1262 km 30 km		100 km	613 km	713 km	1262 km
Indicator	Unit	A4 LT (1)	A4 LT (2)	A4 SWE (3)	A4 SWE (4)	A4 DK (5)	DK (6)	A4 UK (7)	A4 UK (8)	A4 PL (9)	A4 PL (10)
Hazardous waste disposed	kg	4,129E-2	1,376E-1	3,334E-1	4,711E-1	6,719E-1	8,096E-1	8,419E-1	9,795E-1	6,882E-1	1,10E+00
Non- hazardous waste disposed	kg	4,57E+00	1,52E+01	3,12E+01	4,64E+01	6,24E+01	7,77E+01	6,46E+01	7,98E+01	7,61E+01	1,22E+02
Radioactive waste disposed	kg	2,917E-4	9,723E-4	2,296E-3	3,269E-3	4,622E-3	5,595E-3	5,643E-3	6,616E-3	4,861E-3	7,778E-3

Output flows

	Results per functional or declared unit													
Indicator	Unit	A1	A2	A3	Tot.A1- A3	A4 (all)	A5	C1	C2	C3	C4	D		
Component s for re-use	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00		
Material for recycling	kg	0,00E+00	0,00E+00	1,47E+02	1,47E+02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	7,09E+02	0,00E+00	0,00E+00		
Materials for energy recovery	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00		
Exported energy	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00		

ENVIRONMENTAL IMPACTS – EN 15804+A1, CML / ISO 21930

					Results p	er functio	nal or deo	clared unit	1			
Indicator	Unit	A1	A2	A3	Tot.A1- A3	A4 SWE (3)	A5	C1	C2	C3	C4	D
GWP	kg CO ₂ eq.	1,61E+02	8,703E-1	1,22E+01	1,74E+02	2,12E+01	3,57E+01	3,27E+00	4,50E+00	4,66E+00	1,51E+00	-5,42E0
ODP	kg CFC 11 eq.	7,817E-6	1,641E-7	1,421E-6	9,401E-6	4,025E-6	2,186E-6	5,634E-7	8,491E-7	7,573E-7	5,009E-7	-4,58E-7
AP	mol H ⁺ eq.	4,23E-1	1,786E-3	5,86E-2	4,834E-1	1,385E-1	1,046E-1	4,866E-3	9,246E-3	1,267E-2	6,074E-3	-2,23E-2
EP	kg PO4 ³⁻ eq.	1,694E-1	3,608E-4	2,292E-2	1,927E-1	1,876E-2	4,972E-2	8,573E-4	1,868E-3	3,886E-3	1,175E-3	-1,2E-2
POCP	kg Ethenee	2,588E-2	1,132E-4	4,699E-3	3,069E-2	4,772E-3	9,201E-3	5,011E-4	5,858E-4	9,049E-4	4,454E-4	-1,82E-3
ADP- minerals & metals*	kg Sb eq.	1,25E-2	1,499E-5	1,987E-4	1,271E-2	3,397E-4	1,869E-3	5,034E-6	7,754E-5	5,814E-5	1,403E-5	-6,11E-4
ADP- fossil*	MJ	1,31E+03	1,35E+01	1,99E+02	1,52E+03	3,30E+02	3,24E+02	4,48E+01	6,99E+01	6,39E+01	4,27E+01	-7,818E1

 GWP = Global Warming Potential; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential; EP = Eutrophication potential; POCP = Formation of ozone of lower atmosphere; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption

* Disclaimer: The results of this environmental impact indicator shall be used with care as the uncertainties of these results are high or as there is limited experience with the indicator.

General information

Programme information

Programme:	The International EPD [®] System
Address:	EPD International AB
	Box 210 60
	SE-100 31 Stockholm
	Sweden
Website:	www.environdec.com
E-mail:	info@environdec.com

CEN standard EN 15804 serves as the Core Product Category Rules (PCR)

Product category rules (PCR): PCR 2019:14 Construction products (version 1.1); Complementary PCR (c-PCR):C-PCR-003 (TO PCR 2019:14) - Concrete and concrete elements, version: 2019-12-20;

PCR review was conducted by: The International EPD® System

Independent third-party verification of the declaration and data, according to ISO 14025:2010

 \Box EPD process certification \boxtimes EPD verification

Third party verifier: Silvia Vilčeková, Silcert, s.r.o Approved by: The International EPD[®] System

Procedure for follow-up of data during EPD validity involves third party verifier:

The EPD owner has the sole ownership, liability, and responsibility for the EPD.

EPDs within the same product category but from different programmes may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804. For further information about comparability, see EN 15804 and ISO 14025.

During revision (2022-01-03) A5 stage calculations were added to the EPD.

References

- General Programme Instructions of the International EPD® System. Version 3.01;
- PCR 2019:14 Construction products (version 1.1);
- C-PCR-003 (TO PCR 2019:14) Concrete and concrete elements, version: 2019-12-20;
- EN 15804:2012+A2:2019 Sustainability of construction works. Environmental product declarations. Core rules for the product category of construction products;
- ISO 14044:2006/Amd 2:2020 Environmental management. Life Cycle Assessment. Requirements and guidelines.
- ISO 14025:2010 Environmental labels and declarations. Type III environmental declarations. Principles and procedures.

Tools and database

- One Click LCA tool;
- Ecoinvent 3.6 database

Contact information

EPD owner:	INHUS Prefab, UAB https://www.inhusprefab.eu/en
LCA author:	Vesta Consulting, UAB https://www.vestaconsulting.lt/
Programme operator:	The International EPD® System https://www.environdec.com

